An observationally based constraint on the water-vapor feedback

نویسندگان

  • N. D. Gordon
  • A. K. Jonko
  • P. M. Forster
  • K. M. Shell
چکیده

[1] The increase in atmospheric concentrations of water vapor with global warming is a large positive feedback in the climate system. Thus, even relatively small errors in its magnitude can lead to large uncertainties in predicting climate response to anthropogenic forcing. This study incorporates observed variability of water vapor over 2002–2009 from the Atmospheric Infrared Sounder instrument into a radiative transfer scheme to provide constraints on this feedback. We derive a short-term water vapor feedback of 2.2 ̇ 0.4 Wm–2K–1. Based on the relationship between feedback derived over short and long timescales in twentieth century simulations of 14 climate models, we estimate a range of likely values for the long-term twentieth century water vapor feedback of 1.9 to 2.8 Wm–2K–1. We use the twentieth century simulations to determine the record length necessary for the short-term feedback to approach the long-term value. In most of the climate models we analyze, the short-term feedback converges to within 15% of its long-term value after 25 years, implying that a longer observational record is necessary to accurately estimate the water vapor feedback.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An important constraint on tropical cloud - climate feedback

[1] Tropical convective anvil clouds detrain preferentially near 200 hPa. It is argued here that this occurs because clear-sky radiative cooling decreases rapidly near 200 hPa. This rapid decline of clear-sky longwave cooling occurs because radiative emission from water vapor becomes inefficient above 200 hPa. The emission from water vapor becomes less important than the emission from CO2 becau...

متن کامل

Effect of water vapor feedback on internal and anthropogenic variations of the global hydrologic cycle

Using two versions of the GFDL coupled ocean-atmosphere model, one where water vapor anomalies are allowed to affect the longwave radiation calculation and one where they are not, we examine the role of water vapor feedback in internal precipitation variability and greenhouse-gas-forced intensification of the hydrologic cycle. Without external forcing, the experiment with water vapor feedback p...

متن کامل

Cloud and Water Vapor Feedbacks in a Vertical Energy-Balance Model with Maximum Entropy Production

A vertically one-dimensional model is developed with cloud fraction constrained by the maximum entropy production (MEP) principle. The model reasonably reproduces the global mean climate with its surface temperature, radiation and heat fluxes, cloud fraction, and lapse rate. The maximum convection hypothesis in Paltridge’s models is related to the MEP principle, and the MEP state of climate is ...

متن کامل

Stratospheric water vapor feedback.

We show here that stratospheric water vapor variations play an important role in the evolution of our climate. This comes from analysis of observations showing that stratospheric water vapor increases with tropospheric temperature, implying the existence of a stratospheric water vapor feedback. We estimate the strength of this feedback in a chemistry-climate model to be +0.3 W/(m(2)⋅K), which w...

متن کامل

Tropical Water Vapor and Cloud Feedbacks in Climate Models: A Further Assessment Using Coupled Simulations

By comparing the response of clouds and water vapor to ENSO forcing in nature with that in Atmospheric Model Intercomparison Project (AMIP) simulations by some leading climate models, an earlier evaluation of tropical cloud and water vapor feedbacks has revealed the following two common biases in the models: 1) an underestimate of the strength of the negative cloud albedo feedback and 2) an ove...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013